If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+300x+1495=0
a = 4; b = 300; c = +1495;
Δ = b2-4ac
Δ = 3002-4·4·1495
Δ = 66080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{66080}=\sqrt{16*4130}=\sqrt{16}*\sqrt{4130}=4\sqrt{4130}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(300)-4\sqrt{4130}}{2*4}=\frac{-300-4\sqrt{4130}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(300)+4\sqrt{4130}}{2*4}=\frac{-300+4\sqrt{4130}}{8} $
| 81-14x=20x+13 | | (2x+4)+(2x+3)+(2x)=(2x)+(2x)+(3x+5) | | -2-10u=-8u | | -3r+4-(2r-3)=r | | 92x=20x+300 | | 7x-1/4-1/7(2x-1+x/2)=4 | | (x+2)=91 | | (2x+3)=91 | | 7(x-20)=3(x+12 | | |3x+4|-|7-2x|=2 | | -2-3(2x+7)=-20 | | (12x/6)+20-5=35 | | -8x+3(5x)=42 | | (12x/6)+220-5=35 | | 2x-x-2=2-x-1 | | −11=7+23k | | 12x-92=9x-65 | | (12x/4)+8-1=40 | | A=(6+12)x9/2 | | w/3-9=5 | | A=(4x2)/2 | | 18x-76=49-7x | | 3x=36−3x | | 8+5n=64 | | 0.04x-0.07=0.11 | | 2.95x-9.75=9.7x+3.95 | | d–6=4 | | k^2(k-10)(k+10)=0 | | t=-16t^2+6 | | 6(x+2)=72- | | 6x^-42=0 | | x+3/7x+(x+10)=180 |